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ABSTRACT 

The representations of the non compact group SU(1,t) are discussed 

with regard to applications to dual resonance models. The Gliozzi 

operators are constructed from a standard differential representation 

of SU(1,1). We point out that the delicate limiting procedure appearing 

in the recent literature has its group theoretical basis in the fact that 

SU(1, I), unlike its compact counterpart SU(Z), has no non-trivial unitary 

spin zero representation. We further note that the vertex appearing in 

the model effectively transforms as the spin -a0 representation of the 

continuous class, exceptional interval, of SU(1,f). The N point dual 

amplitude then appears as the coupling of N such vertices to the identity. 

Finally, we discuss the classification of the states in the model under 

the group. A complete classification in terms of SU(1, 1) is shown to 

break down at a(s) = 8 on and below the 4th daughter trajectory. 
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I. INTRODUCTION 
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where z. = e 
ibi 

and (1. 2) 

The N-point generalization of the Veneziano formula’ was shown by Koba 

and Nielsen’ to possess an SL(2, Cl symmetry. In their work, they exhibit 

the N-point amplitude as an ordered integration over points on the unit 

circle which are in one-to-one correspondance with the external scalar 

mesons, i. e. 

As a result of the SL(2, C) symmetry, it is possible to fix any three points 

and then integrate over the remaining N-3 variables. A convenient choice 

for these points is zNml = 1, zN = -i, z1 = i, corresponding to the configura- 

tion of Figures i-a and l-b. The remaining variables are then integrated 

over the first quadrant. Any multiperipheral dual configuration can be 

3 
obtained by mapping any three consecutive points into the positions 1, -i, 

and i, leaving the order unchanged. Should non-consecutive points be 

mapped onto the above locations, one arrives at non-multiperipheral 

- 
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configurations of the amplitude. These transformations form a discrete sub- 

group of SU(1, i), the continuous subgroup of SL(2,C) that maps the unit 

circle onto itself. Its properties were first studied in detail by 

V. Bargmann; 
4 

we summarize them in Appendix A. 

In the next section, we discuss in detail the group-theoretical 

content of the scalar dual vertices. Section III is devoted to the problem 

of classifying the intermediate states of the dual amplitude under SU (4,i). 

II. GROUP PROPERTIES 

As shown by Fubini and Veneziano, 5,6 there appears in the N-point 

function an operator which ostensibly transforms as a scalar under SU(1, 1). 

However, SU(i, 1) has no non-trivial scalar Unitary Irreducible Representation 

(UIR), as noted in Appendix A. It is the purpose of this section to try to 

clarify the connection between the group SU(i, 1) and the various operators 

appearing in the factorization of the amplitude. 
7 

We start by writing an operator function in a basis belonging to a 

spin J representation D (+) J of the algebra 

m 

c 

412 

Fpb) = ai;) IJ, -J,m) z r a(;’ z-J + m, (2.1) 

m=o m=o 

where we have used equations (A-9) and (A-13). Similarly, a corresponding 

operator function expanded in the conjugate basis D (-) J IS given by 

-- 
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cc 
c .(m) + p ) J, J, -m) = h-;;Z.T)! i’2ZJ-m, (2. 2) 

m=o I 

where we take a(y) a(r)’ to be harmonic oscillator operators7satisfying 

[a(y), a(~)+]zg,a6~m 
(2.3) 

we use the metric (+ + + - ). Let -2J = F where E is a small positive real 

number. Expanding to first order in E, we obtain 

Fp(z) = (1 +:lnz)(>+iJ$)+ iI a(T)g (2.4a) 

~P(,iz(*-$Inz)(~-i >)+ z;(T)+5 (2.4b) 

where q 
OP 

and p 
OP 

are the canonical coordinates corresponding to the 

“zero” mode. These expressions are not well defined. However, the 

factor $p 
OP 

appearing in both forms disappears in their sum 

Qp(z) = Fpb) + Fp(z) (2. 5a) 
m 

+ip P nz + c 

a(y! zm+ a(m)+ -m z 
=9 P 

OP OP m=l viz 
(2. 5b) 

We recognize the scalar operator of references (5,6) which is a direct 

sum of two operators,each irreducible under SU(1,i). 
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It is possible to construct a representation of the SU(i,I) algebra in 

the space of the operators (2. 3) by sandwiching the differential expressions 

(A-8) between the operators F or F and then using the orthogonality properties 

of the basis states. 

The result is: cc 

= (F]Lo/F) = c 
(m-J)a(m)'+ 

l-n=0 
(2. 6a) 

m 

L+ = (FjL+/F) = 
I[ 

(m-2J)(m + 1) 1 112 

2 
atm ’ I!’ atm) (2. 6b) 

l-n=0 

;, = (F/L-/F) = 
(r-n-2J)(m + 1) 

I 

112 
a(m).ta(m + I) (2. 6~) 

2 

These results have been obtained by keeping J arbitrary both in ,equations 

(2. 1) and (A-8). When we let J = -$- e and expand to first order in E, we 

find (dropping the carets from now on) that the operators (2. 6) become 

(2. 7a) 

respectively m 

Lo=&:+ c 
ma(m) Tab) 

lTl=l 

m 

w+ + 
Cd m(m + 1 (m + 1) 1) a +p (2. 7b) 
m=l 1 

L- = 4 [ipo. a(‘) + 2 dm(m + lfa(m)Ta(m + t) 1 . (2. 7~) 

These are the operators formed by Gliozzi 
a. 

m connection with the Ward-like 

identities. This means that the representation (2. 7) of the SU(1, 1) algebra 
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is the relevant one when dealing with the amplitude (1.1). Under these 

operators, our fundamental operators Fp(z) transform as follows [ taking 

-25 = E <<I] : 

[Lo’ Fp(z)l p 
= -z & F (z) 

[ L+s Fp(zl] = -& (z-& + ;)Fp,,, 

[L-a Fp(z)l = - $ [z& -;) Fp(z) 

(2. Sa) 

(2.8b) 

(2. 8c) 

from which 

L+, [ L-a FpW1 1 [ + L-s [ L+. FpW 1 [ - Lo, [ Lo> FpW 1 
= : II - 5) Fp(z) (2. 9) 

The same commutation relations hold when Fp(z) is replaced by Fp(z). 

As stated above, this means that Qp(z) transforms reducibly under the 

Gliozzi operators (2. 7). It follows from (2. 8) that under finite transformations, 

we have 

eic’ L 
(2.10) 

where ei5. L is the representation of the group element h, corresponding to 

the matrix (A-l) of Appendix A. 
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Next we would like to consider the modified vertex describing the 

absorption or emission of an on shell scalar meson of momentum k 
P 

V(k 
. 

z) _= .ik. F(z) .ik. F(z) 
, 

the form of which becomes suggestive in the quart-antiquark interpretation 

of the emitted meson. It follows directly 9from equations (2.8) that as E -0 

[ Lo’ V(k, z)] = - z d+ V(k, z) (2.12a) 

*i 

[L*. V(k,z)] = - z 
dT 

where we have used 
m 

lim E c 
(m + e-i)! 

m! 
= 1 

E+O m=o 

Then, as a consequence of Equations(2. 12), 

L+C L-z V(k z)l 1 [ + L-, [ L+, V(k, z)] - 1 [ Lo> [ Lo, V(k,z)l I 
=$(i -k2)V(k 

2 ’ 
z) 

and 

(2. i2b) 

(2.13) 

(2.14) 

e 
ic ’ L V(k, 2) e -i& = , /+ z / -k2 v 

(2.15) 
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The 1 ast equation has been derived by taking z to be on the unit 

circle. We take k2 to be real. It can then be seen from equation (A-18) 

that V(k, z) formally transforms according to an UIR of the continuous 

- s (or s 
2 

class, exceptional interval with CI = cy 
0 

- $ if we take equation (2. ii) 

to hold for off-mass shell mesons). Then -a0 is the SU(1, 1) “spin”of the vertex 

operator. 

We might now ask how one might couple N such vertices to make 

an SU(i, 1) invariant. This problem is solved by V. Bargmann(see 

Equation A-17) for the case N = 2. An obvious generalization to N > 2 is 

N 2rr 
rue-1 

AN = Qj [ 1 - cWbj - bj + ,)I 2 V(kj, zj) (2.16) 

where zi = e 
iti 

and the Q’s are defined cyclic.ally (dN+i = 4,). The invariance 

of AN under the group SU(1, 1) is evident from equation (2. 15) since 

where 

N 

n 
j=l 

d$ [ 1 - cos ($j - $j + 

CZo-I 

= fi d$’ [ 1 - COS(~; - $‘+ $- 

j=l 

eiq = (ye 
i4j 

-p*: . 

:,k 
Q -pe 

Qj 

(2.17) 

(2. 18) 

In order to make contact with the N-point Veneziano function, we note the 

following 
1 - co.5 ‘bj - $) = 2 1 1 zj - zi / 2 (2. i9) 
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N i2 Nk2 
and 

n 

2 c 

‘<j 

ka’kj ’ - LJ 2E 

<OI 
j=i 

V(kj, zj) 1 O> = e 
(2. 20) 

where we have used conservation of momentum , and 

(2.21) 

The last factor in Equation (2. 20) can be absorbed by a suitable redefinition 

of the V’s. The phase appearing in (2.20) can also be absorbed in V 

provided that we impose an ordering condition on the angles, $a > bp + 1 

or$,< 4p +1, corresponding to a cyclic or anticyclic ordering of the 

momenta k p respectively. Since SU(l, 1) does not change the ordering of 

points on a circle, modifying Equation (2. 16) by the product of the appropriate 

0 - functions does not alter its invariance properties. We then obtain 

N 27 

<O/ANjO> = cWi 1 zi - zi + 1 1 

ma-l 
@(4i - $ + 1) l-l I ‘i -‘j I 

ki. kj 

i< j 

(2.22) 

which is the Koba-Nielsen form of the Veneziano amplitude ( eqmtion 1. i) 

apart from the invariant factor given by equation (1. 2). 

Finally, we wish to point out that in the absence of any ordering condition 

on the angles, the phase factors in Equation (2. 20) play a special role in the 

case cy = 1. 
0 

Indeed, we can then show explicitely that for N = 4, the unordered 
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form of the amplitude (2. 22) is proportional to the sum of the three beta 

functions 
10 

<o / ANI O> = 2C B(-as, - ~~1 + B(-cus. - au) + B(-at, - wu) 
3 

(2. 23) 

where C is the constant appearing in Equation (1. 2), and the numerical factor 

stems from the double-counting of each inequivalent permutation of the 

external legs. This equation would not hold in the absence of the phase factors. 

One can further speculate that this is also true for N>4, and that the 

unordered amplitude < 0 ] AN / 0 3 represents twice the sum over all inequivalent 

permutations of the external legs, i. e., the total dual amplitude. 

III. CLASSIFICATION OF THE STATES 

The spectrum of the intermediate states appearing in the factorization of 

the multi-Veneziano amplitude (1. 1) is well-known. It consists of particles 

whose mass m 
n’ 

satisfies u(mf;) = n, n = 0, 1,. . . ; the enormous 

degeneracy present in the theory arises from the fact that for a given n, the 

contributing states are those eigenstates of the partition operator. 

m 

R. = 
c 

mat (m! ,(m) 

m=l 
(3.1) 

with eigenvalues less than n. This situation is somewhat alleviated in 

the case e. = 1 where only the states with eigenvalue n contribute. In 

terms of the Gliozzi operator, the contributing states satisfy 
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Lob pbs 
> = (a - 

0 1 )I* 
PM> 

(3. 2) 

where f = 0,1,2, ~ 1. . Hence, for a given (Y 
0’ 

the spectrum of Lo is 

bounded from above. 

We now wish to build representations of the Gliozzi algebra, and 

start by considering the state 

]k,O> = e 
ik. q 

OJ Oh (3. 3) 

which is normalizable and annihilated by L -. Thus, in the manner of 

Appendix A, one is tempted to generate all the states by repeated 

application of L + 

Ik,j> = yj(k2HL+)Ji k, 0 > (3.4) 

where vj(k2) is a normalization constant 

yj(k2) = 
.& 

(k2 + j-l)! -1’2 

2j (k2 - 1) ! 1 (3.5) 

In addition, 

L” ] k, j > 
2 2 

= $- (1 -$-) Ik,j> (3. 6) 

2 
so that the lowest states ( s = oo) have the same SU(i, 1) spin as V(k, z). 

The physical states are those for which j = a(s) -1 with 1 = O,l, . . . ,cu(s). 

Unfortunately, these states are always the spin zero projection of the 

full tensor states so that they certainly do not represent the whole spectrum. 

Furthermore, it can be seen that for j sufficiently large, the states (3. 4) 
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are linear combinations of occupation number states which cannot all 

be accounted for by SU(1,i) quantum numbers alone. This point will 

be clarified. In order to construct states with spin, introduce the 

m 
R+ =k c f.Jwa(n + i)‘. a(n) (3. 7a) 

n=l 

R 1 Jn(n+l) a(n)t. a(n+l’ (3. 7b) 
n=l 

which form a SU(1, 1) algebra with the partition operator Ro. We wish 

to classify the intermediate states in terms of UIR’s of this algebra. 

First we note that the number operator 

m 

N = 
c 

at(n)a ah) 

n=l 

commutes with R+, R , and R. although it is not simply related to the 

Casimir operator 

R2 = R+R-+R-R+-RE . (3.9) 

It follows from Schur’s lemma that we can construct different UIR’s as 

eigenstates of N. We thus define the basis states 

1 k;n,o> = (3. IO) 

where the ket on the left hand side stands for all partition states of n 



-12- THY - 5 

Since R annihilates the states (3. i0) 

we can form UIR’s by repeated application of R,. 

I k; n, m > = N(n, m) (R+)m 1 k; n, o > 

These form an orthonormal set if we choose 

N (n,m) = 
Zm(2n-i)! 212 

m! (2n + m-l)! 
I . 

(3.11) 

(3.12) 

By construction we have 

RoIk; n,m> = (n + m) 1 k; n, m > 
2 

LoI k n, m > = ($-+n+m)]k;n,m> 

NI k n,m> = n / k;n,m> 

R2 1 k; n, m > = n(i - n) 1 k; n, m > . 

(3.13a) 

(3. i3b) 

(3. 13 c) 

(3. 13d) 

Again, the states contributing to the pole a(s) = integer are those for 

which 

k2 
0 5 n + m 5 (Y(S) = a0 - 7 (3.14) 

The kets (3.11) are in one to one correspondance with the occupation 

number states up to CC(S) = 4. Here unfortunately the huge degeneracy in 

the model begins to complicate the SU(1, 1) classification. This is easy 

to see since (3. 11) contains only one state with R. = 4.N = 2 namely 

1 k,2,2 > = N(2,2) ( fia(3)ta(i)t + a(2)ta(2)t) IkO > (3.15) 
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whereas there are clearly two independent occupation number states 

with these quantum numbers. However, the state 

N (2,2) (a(3)ta(i)t - fla(2)ta(2)t) 1 k 0 > (3. 16) 

is orthogonal to (3. 15) and is annihilated by R _~ Hence, (3.. 16) serves as 

the lowest state of a new UIR of SU(i, 1) with Casimir invariant 

R2 = 4(1-4). This procedure is satisfactory; however, only up to 

a(s) = 8 when further trouble sets in. At this level there are two 

extra independent occupation number states leading to two representations 

degenerate in R2, R. and N. Beyond this point, 

the SU(l,i) of Eqs. (3. 1) and (3. 7) becomes progressively more inadequate 

for classification of states suggesting that either a larger group is at 

work or that many states (good states as well as ghosts) are decoupled 

in the model from physical scalar meson states. The above anomaly 

only affects states lying on or below the fourth daughter trajectory. All 

those on the parent and first three daughters (as well as all states below 

(Y(S) = 8 ) can be unambiguously classified under the SU(i, 1) scheme. In 

view of the simple connection between the ,R algebra and the Cliozzi algebra, 

one might hope that such a classification will lead to general statements 

about the norms of decoupled states. 
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In this paper, we have discussed the multi-Veneziano amplitude in 

terms of the group SU(1,1) which is responsible for the duality trans- 

formations. We have shown that the intercept of the trajectory played a 

fundamental role as it could be likened to the SU(i, 1) spin (its relation 

to the SU (1, 1) subgroup of the Lorentz group that acts on the external 

momenta is still not clear). 
il 

The vertices describing the emission 

(or absorption) of a scalar particle satisfy transformation properties 

under the Gliozzi algebra which allow for the existence of an invariant 

form,the v. e. v. of which is shown to be the multi-Veneziano formula, 

As this construction depends crucially on the mass of the emitted (absorbed) 

scalars, it does not allow for duality off the mass-shell. This suggests 

that the transformation properties of the three-reggeon vertex be 

investigated in the hope of building dual amplitudes for particles with 

spin. This point is currently under study. In addition, when (Y = 1, 
0 

the most general invariant is seen to represent the total amplitude 

(at least for N = 4) with all non-equivalent permutations included. Our 

approach suggests this might be true in general, thus, providing an 

attractive closed form for the total N-point amplitude. Finally, it is 

puzzling that the SU(i, 1) classification of the occupation number states 

in the theory fails even though we have many different UIR’s of the algebra 

at our disposal (the vector space is highly reducible). The value of the 

Casimir operator obeys a certain spectrum, thus suggesting the existence 



-15- THY - 5 

of a higher group, perhaps 0 (3,I) or 0(4,2). On the other hand, it 

might just be that the theory cannot distinguish between all different 

occupation number states, in which case the degeneracy will be greatly 

reduced. 
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APPENDIX A 

Definitions: The group SU(1,I) is the group of all two-dimensional 

unimodular pseudounitary matrices. A general element h of SU(1,1) is 

in one-to-one correspondance with the matrix 

h- (A-1) 

where a and p are arbitrary complex numbers (* denotes complex 

conjugation). Thus, h can be specified by three real parameters. 

Correspondingly, the Lie algebra of SU(1,I) contains three linearly 

independent elements L o, Lf and L2 which are identified in the defining 

non-unitary representation of SU(1,1) in terms of the Pauli matrices as 

follows 

1 1 
Lo=p3=2 1 1 0 

o-1 I 1 
L*=21c-J2=~1 . 1. 1 

O-i 
; i o I ; 

L 
2 

=_lio =-li O’ 
2 1 2 1 1 1 0 

(A-2) 

These obey the commutation relations 

[ Lo’ ~~1 =iL2; [Lo, L2] =-iLi ;ILin L21=-iLo (A-3) 

The Casimir invariant of the above algebra is the quadratic operator L2 
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defined by 

(A-4) 

Finally, every element h of SU(1, 1) may be expressed as a product 

ipL 
0 

i& L ivL 
e 2e O (A-5) e 

corresponding to the decomposition 

( ;* ;) = (f”’ &) (-& x;;;) ( ;‘2 ‘“iv,2) (A-6) 

Although the parameters EL, 5, and ,V are not uniquely defined by the above 

relations, it suffices to specify their ranges as follows 

O<~<m ; -2ircp, v < 2ir (A- 7) 

We now consider the representations of SU(l,i). Each Unitary Irreducible 

Representation (UIR) can be characterized by the value of the Casimir 

2 
invariant L , and the spectrum of eigenvalues of Lo. We first summarize 

the representations of the algebra. For that purpose we introduce a 

convenient realization of the commutation relations (I-3) in terms of 

differential operators 

Lo = z$ 

L+=fi 1 1 (L + iL2) = &( 2 d+ - J, (A-81 

1 -I d L-=~(L1-iL2)=& (zdy+J) 
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from which L2= -J(J + 1) is automatically a c-number. Representations 

of the algebra can be constructed in the complex z-plane in terms of 

eigenstates of L 
0 

1 J, k, m) = N(J, k, m) z 
k+m 

(A-9) 

with the normalization N chosen so as to insure 

(J,k,m 1 J’,k’,m’) = brn m,6k k, hJ 
> 

J, (A-10) 

Clearly 

LoI J,k,m) = (k+m) 1 J,k,m) (A-11) 

where m is an integer and k is an auxiliary variable further defining the 

representation. 

There are three types of representations: 

a) Representations bounded below for which K = -J sothat 

L- ) J, -J, 0) = 0. All states are obtained by repeated application 

of L+ on 1 J, -J, 0); the spectrum of eigenvalues of Lo is -J, 

-J + 1, -J + 2,. . . . 

b) Representations bounded above for which k = J so that 

L+ 1 J, J,O) = 0. All states are obtained by repeated application 

of L on / J, J, 0); the spectrum of eigenvalues of Lo is J, J-1, J-2,. . . 

c) Unbounded representations for which k # i J. The spectrum of 

eigenvalues of L is unbounded, increasing in integer steps. 
0 

Further restriction to unitary representations demands that J be real 

1 
and negative for bounded representations, and J be real or J = - z + is 



-19- THY - 5 

(05 ~<a) for the unbounded representations. In addition, the requirement 

L+ = (L )’ when taken between the 

normalizations 

/N(J, k, m) 1 
2 

jN(J, k, m-1) 1 2 

from which 

states (A-9) yields a condition on the 

:I; 
= (k+m -1 -J) 

(k + m + J) 

(A-12) 

N(J, *J, m) = 
(-25 + Im( -i)! 1’2 

Iml! 1 (A-13) 

for the bounded representations. We note that N(J,i J,O) = d(-25 -1 ! 

diverges as J- 0. Hence, the scalar UIR of SU(i, 1) is not well-defined 

for bounded representations and must be considered as the limit of -J 

small but finite. Similarly, in the ease of continuous representations, we 

must have 

-I<ReJ<O (A-14) 

The norm of the states is again not well-defined at the endpoints. In construct- 

ing UIR’s of the Lie group as opposed to the algebra, the further restriction 

-1~ ReJ< - $ arises. The single valued U1Rc.s of SU(i. 1) have been determined 

by V. 13argmann4 The restriction to single-valued representations 

implies that k is either an integer or a half-integer. 

The different classes of UIR’s are the following: 

A) Continuous class, integral case, non-exceptional interval, denoted by cJ”: 

J = -i-is; Ocs<m; k = 0, m = 0, *i, *2 ,... 
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B) Continuous class, half-integral case, denoted by C J : 

J=-$-is; O~s<oo; k=:, m=O, *;1, +2,... 

C) Continuous class, exceptional interval, denoted by Co: 
J 

J+n; o<cr< 1 2 ; k = 0, m = 0, *i, *2,. ~. 

(+I D) Discrete class, positive m. denoted by D J : 

J<O; k=-J m=0,1,2,... , 

C-1 E) Discrete class negative m, denoted by D J : 

J<O; k = J, m = 0, -i,-2 ,... 

We now proceed to summarize the various realizations of the above UIR’s. 

i) UIR’s of the class Ci non-exceptional interval can be realized 

in a Hilbert space H of square integrable functions on the unit 

circle. Elements of H correspond to functions f@,) of the real 

variable $ varying in the range 0 5 &2rr. The inner product of 

an element f with an element g is given by 

2n 

I 
db f*W g(4) (A-15) 

If h is an element zf SU(1,i) corresponding to the matrix (A-i) 

there corresponds a unitary operator U(h) such that 

(A-16) 

e 
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The forms of the generators Lo, Li, L2 can be obtained by 

properly specializing the element h. 

ii) UIR’s of the class Cy exceptional series may be constructed 

explicitely in Hilbert spaces Hoconsisting of a certain class 

of functions f(6) on the unit circle 0 9$<2rr the scalar product 

of two elements f, g is given by 

(f,g)c= 1 
m2 

d42 f (4,) Lo(b1-+21g(42) 

0 0 

i 

(A’- 1 a) 

Lpi-42l = (237) 
i/2 lyu+ i/2) 

2”. l?(c) [ 
i-cos($l-+2j (r -112) 

The unitary operator U(h) representing the element h corresponding 

to (A-1) acts as follows 

[ 1 U(h) f (4) = 1 (Y” -peiml -i -2uf Qh($) [ 1 
ei*h(b) = eeibmp* 

8 
(Y -pe i4 

0 54, Qh (41 < 7.7r 

(A-18) 

Again, the forms of the generators Lo, Li, L2 can be obtained 

by a convenient choice of h. 
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iii) UIR’s of the class D (+) J J = 1,2,... may be realized via unitary 

transformations in a Hilbert space H 
J 

of analytic functions of a 

complex variable z. Elements of HJ correspond to functions f(z) 

which are analytic and free of singularities in the open unit 

circle ) z j < 1. 

The scalar product is defined as follows 

(f,g)J = -2:-j d2z (1- 1 z) ‘)-” -’ f;‘(z)g(z) (A-19) 

where the integration extends over the interior of the unit circle. 

The unitary operator U(h) corresponding to (A-l) acts as follows 

[ 1 TJ(h)f (z) z ((ui; + ipz)2J f (A-20) 

from which the forms for the generators can be found by specializing 

h. 
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FIGURE CAPTIONS 

Fig. la. Multiperipheral configuration for the N point function 

Fig. ib. Standard association of external particles with points on the 
unit circle. The amplitude can be factorized into N-3 
integrations over the projections of z2, z3,. . . z onto the 
real axis. n-2 
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